Effects of vegetation canopy processes on snow surface energy and mass balances

نویسندگان

  • Guo-Yue Niu
  • Zong-Liang Yang
  • Katherine G. Jackson
چکیده

[1] This paper addresses the effects of canopy physical processes on snow mass and energy balances in boreal ecosystems. We incorporate new parameterizations of radiation transfer through the vegetation canopy, interception of snow by the vegetation canopy, and under-canopy sensible heat transfer processes into the Versatile Integrator of Surface and Atmosphere (VISA) and test the model results against the Boreal EcosystemAtmosphere Study (BOREAS) data observed at South Study Area, Old Jack Pine. A modified two-stream radiation transfer scheme that accounts for the three-dimensional geometry of vegetation accurately simulates the transferring of solar radiation through the vegetation canopy when the leaf and stem area index is reduced to match the observed. VISA produces higher-than-observed surface albedo in wintertime. Implementation of a snow interception model that explicitly describes the loading and unloading of snow and the melting and refreezing of snow on the canopy into VISA reduces the fractional snow cover on the canopy and the surface albedo. VISA overestimates the downward sensible heat fluxes from the canopy to the snow surface, which leads to earlier snow ablation and a shallower snowpack than the observed. Explicitly including a canopy heat storage term in the canopy energy balance equation decreases the spuriously large amplitude of the diurnal canopy temperature variation and reduces the excessive daytime sensible heat flux from the canopy downward to the snow surface. Sensitivity tests reveal that the turbulent sensible heat flux below the vegetation canopy strongly depends on the canopy absorption coefficient of momentum. During spring the daytime temperature difference between the snow surface and the vegetation canopy forms a strongly stable atmospheric condition, which results in a larger absorption coefficient of momentum and a weak turbulent sensible heat flux. The modeled excessive downward sensible heat flux from the vegetation canopy to the snow surface is considerably reduced through the stability correction to the canopy absorption coefficient of momentum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between landscape, snowcover depletion, and regional weather and climate

The e€ects of landscape changes on winter and spring snow-related processes, and on regional weather and climate are not thoroughly understood. In this study, a climate version of the Regional Atmospheric Modelling System (ClimRAMS) is used to investigate the e€ects of landscape change on seasonal snow depletion and its corresponding e€ects on atmospheric and hydrologic processes. Two simulatio...

متن کامل

Variable infiltration capacity cold land process model updates

The Variable Infiltration Capacity (VIC) macroscale hydrologic model is distinguished from other Soil–Vegetation– Atmosphere Transfer schemes (SVATS) by its focus on runoff processes. These are represented via the variable infiltration curve, a parameterization of the effects of subgrid variability in soil moisture holding capacity, from which the model takes its name, and a representation of n...

متن کامل

Dust effects on snowpack melt and related ecosystem processes are secondary to those of forest canopy structure and interannual snowpack variability

Dust deposition lowers the albedo of snow and can significantly alter snowpack energy balance. Investigation of aeolian dust deposition in the mountains of the western U.S. has shown that these effects advance the timing of snowpack melt and spring runoff across much of the region. These studies have primarily focused on alpine snowpacks with little to no overstory vegetation. To evaluate the i...

متن کامل

Is snow sublimation important in the alpine water balance?

In alpine terrain, snow sublimation represents an important component of the winter moisture budget, representing a proportion of precipitation which does not contribute to melt. To quantify its amount we analyze the spatial pattern of snow sublimation at the ground, from a canopy and from turbulent suspension during wind-induced snow transport for a high alpine area in the Berchtesgaden Nation...

متن کامل

Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems

Direct measurements of winter water loss due to sublimation were made in a sub-alpine forest in the Rocky Mountains of Colorado. Above-and below-canopy eddy covariance systems indicated substantial losses of winter-season snow accumulation in the form of snowpack (0Ð41 mm d 1) and intercepted snow (0Ð71 mm d 1) sublimation. The partitioning between these over and under story components of water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004